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A new numerical method, called the explicit simplified interface method (ESIM),
is developed in the context of acoustic wave propagation in heterogeneous media.
Equations of acoustics are written as a first-order linear hyperbolic system. Apart
from interfaces, a standard scheme (Lax—Wendroff, TVD, and WENO) is used in a
classical way. Near interfaces, the same scheme is used, but it is applied on a set of
modified values deduced from numerical values and jump conditions at interfaces.
It amounts to modifying the scheme so that its order of accuracy is maintained at
irregular points, despite the nonsmoothness of the solution. This easy-to-implement
interface method requires only a few additional computational resources, and it can
be applied to other partial differential equationsg 2001 Academic Press
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1. INTRODUCTION

The propagation of acoustic waves in a one-space-dimension heterogeneous perfec
medium is considered. The density and the sound velocity are piecewise constant.
acoustic velocityu and the acoustic pressupeare computed on a uniform grid, even if
interfaces do not coincide with grid points. The goal of this presentation is to develop
accurate method for the computatiorucdnd p near interfaces, where they are not smoott

Even if the one-dimensional problem is academic, it has some interesting applicatior
is often used as a simple model in seismology or ocean acoustics, in which the ocean bc
is described as a multilayered fluid medium [1]. For the sake of simplicity, discontinuit
between sediment layers can depend only on the depth below the sea floor. Furthermor
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228 PIRAUX AND LOMBARD

description of a multilayered medium possibly involving hundreds of interfaces is use
for modeling sound propagation in a fluid medium with many inclusions or bubbles.

Equations of acoustics are usually written as a second-order scalar wave-equation
or p. Itis however useful to computeand p simultaneously by considering the first-order
hyperbolic system

U + A(X) Uy = 0, 1)

where components df) (x,t) areu and p, and A(x) is a matrix involving physical
parameters.

Many schemes can be used for the resolution of (1). A general introduction can be fo
in LeVeque's book [10]. Three schemes of increasing precision are used in this paper: L
Wendroff, TVD, and WENO. They use values of the density and of the sound speec
discrete points or averaged values of these coefficients on grid cells. As a consequence
do not describe accurately the position and the shape (in two or three space dimens
of interfaces cutting grid cells. Furthermoreand p are not smooth across interfaces: it
results in a loss of precision, increasing with the number of interfaces and with contras

It is then interesting to use anterface methodsuch as the immersed interface methot
(IIM) 2, 12, 15], or the explicit jump immersed interface method (EJIIM) [14]. Thes
numerical methods ensure a given accuracy at grid points near interfaces, but the
difficult to implementwith high-order schemes, and they introduce some numerical artef:
in various cases.

A new approach called the explicit simplified interface method (ESIM) is proposed. T
same scheme is used everywhere, but some values involved in time-marching near inter
are modified. Thesmodified valueare deduced from numerical valuedbfat grid points
near the interface and from jump conditions, so that the loss of accuracy because o
presence of interfaces is avoided.

The main goal of this one-dimensional study is to illustrate clearly ideas underlying
ESIM. Similar ideas can be used for other partial differential equations, such as electron
netic or fluid mechanic ones. The paper is divided as follows. In Section 2, conserva
laws, jump conditions, and some numerical schemes are recalled. In the same sectiol
vantages and drawbacks of interface methods such as the [IM and the EJIIM are develc
The ESIM is presented in Section 3. Section 4 consists of numerical experiments includi
2D example. Section 5 concludes the paper by recalling the three key-stages of the me

2. NUMERICAL SCHEMES AND INTERFACE METHODS

2.1. One-Dimensional Acoustic Equations
Conservation laws. The linearization of mechanic equations in an ideal fluid leads tc
pUt+ px =0
, 2)
Pt + pcux = 0,

whereu(x, t) is the acoustic velocity ang(x, t) is the acoustic pressure. The density is
p(X) and the sound speeddsx). Setting

u 0 7
U(x,t):(p), AX) = Tk (3
pC
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a first-order linear hyperbolic system is obtained,
Ui + AX)Uy =0. (4)

Jump conditions. The location of abrupt changes jnand/orc is called aninterface
Unlike gas dynamics problems, interfaces do not move. In one, two and three spac
mensions, an interface is respectively a point, a curve, and a surface. This definition ce
extended to boundary-value problems or singular sources [12, 14]. To keep it simple,
one interface at = « is considered in Sections 2 and 3. Physical parameters are piecev
constant,

(p~,c7) if x<
<p,c)={p ¢ (5)

(pt,ch) if x> a.

It leads to constant matrices™ if X < o and A" otherwise:

0 1 0 1
A=< p) ’ A+=< p+> ' (6)
— ()2 +(ct)2
p~(cH* 0 pt(chH° 0

Writing for any functionf (x, t),
[f]= Xin;u f(x,t) — XILrQ_ f(x, 1), @)
we obtain acoustic jump conditions][= O, [p] = 0. It follows that
[U]=0. (8)

Jump conditions of spatial derivativesldfare deduced from (4) and (8). By induction, we
can easily verify that, on both sides®fwe get

aZk 82k

otk U= ax v
82k+1 o aZk-‘rl (9)
gt2k+1 U=-c A8X2k+lU’

forallk > 0.
The relation (8) is true for atl. Differentiating (8) with respect th exchanging the order
of spatial jumps and time derivatives, and using (9) leads to jump condition of any or

Setting
A\ % — N2 42K
Cc . C C
Dy = (C_JF) lo, D2k+1 = dlag<Z—+ (C_Jr) s Zf (C_Jr) )a (10)

wherel; is the 2-by-2 matrix identity, jump conditions are for kli> 0

G 2

I|m+ PV U(x,t) = Dy I|m T U(x, 1), .

§2k+1 921 (112)
x“ﬂ% ax2k+1 Ut = D2k+1 I|m _ xk+l U, ).
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2.2. Numerical Schemes

Given a uniform grid with time stept and spatial mesh sizex, we look to an approx-
imation Ujn of U(xj, tn) at the point(Xj = j AX, t, = n At), called afterwardsumerical
value Two-level explicit finite-difference schemes are used here. They2are 1)-point
spatially centered schemes, whéris called thewidth of the scheme, and time-marching
is performed in two or more stages. They follow the CFL condition of stability

At
CFL = maxc() <1l (12)
AX

To keep it simple, a given scheme is referred t& aime-marching of a two-stage scheme
S is written abstractly ax;

UMt =UD +H(Uly, ., Ul (13)

where the discrete operatdf : R>*@+D _ R? is continuous [7]. Among two-stage
schemes, we distinguish the 3-point Lax—Wendroff schekne {) and 5-point TVD
schemesl{ = 2). The Lax-Wendroff scheme is easy to implement and requires a fi
computational resources but it suffers from numerical dispersion (see Fig. 3b). High-o
TVD schemes, based on the use of nonlinear flux limiters, allow the reduction of the s
rious oscillations [10] but flatten the crests of waves (see Fig. 3c). The MC-limiter is us
in Section 4 [9]. Both schemes are second-order accurate in smooth regions.

A better quality is obtained with multistage schemes such as essential non-oscilla
(ENO) schemes and WENO (weighted ENO) schemes [4, 10]. They are based on dis
discretizations of spatial and time derivatives of (4). We have implemented a spatial in
polation on three points, called WENO Kk £ 3), which is fifth-order accurate in smooth
regions [8]. It involves some regularity parameters 10-% and p = 2 (p has obviously
nothing to do with the pressure). The time discretization is implemented by a fourth-or
Runge—Kutta method.

The interface lies between two grid poirnts: < o < Xj.1, as shownin Fig. 1. A poirg;
is calledirregular if time-marching ak; uses one or more numerical value on the other sid
of the interface. Otherwise, a point is calledjular. For spatially centerek + 1)-point
schemes used here, the set of irregular point® isg.1, . .., Xjik}-

2.3. Interface Methods

Presentation. In one space dimension, and p are inC° across interfaces (11). In
two space dimensions, the acoustic velocity component tangential to the interface is
continuous across the interface; the acoustic pressure and the normal acoustic vel
component are id°. Thus the numerical resolution of (4) with interfaces requires schem
specially designed for the computation of nonsmooth solutions. Schemes based on |

p ¢ o

J+1 J+2

FIG.1. 1D interface.
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finite-difference approximations may give poor results. For example, the Lax—Wendi
scheme results from replacing spatial derivatidgsandUyx by centered finite-difference
evaluations. This is valid only if) (x, t) is smooth in the interval{ — AX, X + AX]. This

is not the case at irregular pointg andx;, 1, leading to a loss of accuracy.

Even with schemes especially designed for the computation of discontinuous soluti
as TVD or WENO schemes [5, 6, 11], the numerical solution suffers from a loss of accur
when interfaces cut through grid cells [15]. This loss of accuracy is due to two reast
Firstly, schemes do not describe accurately the position (and the shape, in two or t
spaces dimensions) of interfaces. Secondly, the spatial order of accuracy is always rec
atirregular points, because of the nonsmoothness of the solution.

Moreover, schemes do not take into account jump conditions at interfaces. Therefore
study of original jump conditions problems (such as the propagation of elastic waves ac
imperfect bonded media [13], or advection problems such as those defined in Chap
of [15]) is difficult. Lastly, numerical instabilities can appear for high contrasts in mater
properties.

Schemes must be modified at irregular points in order to eliminate those problems.
resulting scheme is called émerface methodbecause it is based on jump condition&of
at the interface. Two interface methods are concisely presented in the following sectio

The immersed interface method (IIM)One way is to write explicitly a new scheme at
irregular points: this is the aim of the Immersed Interface Method (IIM). The method w
developed by Li and LeVeque [12], extended to acoustics and elasticity by Zhang [15,
and to Navier—Stokes by Calhoun [2]. In [15], the Lax—Wendroff scheme is used at reg
points. A new 3-point finite-difference scheme is written at irregular points,

At
UBH_]' = US‘ + E(Fj,l U?,]_ + l—1‘],2UE|~| + FJ,3U9+1)
(14)

At
Ul =Ul+ B(FJHJ US4+ Tap12U5, 1 + Tapa3U7).

TheI''s are 2-by-2 matrices, defined so that (14) is a second-order accurate approximati
(4) atx; andx;,1. The analysis of local truncation errongtandx;. 1 leads to a system of
matrix equations whose solutions drs, computed only one time during a preprocessin
stage. At each time step, only some matrix—vector multiplications (14) need to be d
at irregular points, which is very low-cost. The [IM can be coupled with other schem
Zhang has demonstrated that numerical solutions are improved when a TVD schen
used in conjunction with the second-order IIM (4). Using limiter functions reduces t
order of accuracy but helps to dampen oscillations and to reduce phase errors. The
can be developed also to higher orders for coupling with high-order schemes (suc
WENO 5).

However, the use of the 1IM has some drawbacks. For identical material properties
both sides ofy, special formula (14) recover the original Lax-Wendroff scheme; even
the general case of distinct material properties, the second-order 1IM is dispersive.
if formula (14) are used at irregular points and coupled with a TVD scheme (that is |
dispersive), numerical dispersion is introduced at two points per interface: for a high nun
of interfaces, it introduces a large amount of numerical artefacts. In a general mar
building an 1IM that mimics the properties of the sche&e-for example ensuring TVD
properties in the case of a TVD scheme, or minimizing oscillations in the case of the WE
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5 scheme—can become very complicated. Moreover, in the case of TVD sckhem2)(
limiters introduce two additional irregular points,_1 andx; .2, where no interface method
is used.

The explicit jump immersed interface method (EJIIM\ modification and extension
of the IIM has been developed by Wiegmann and Bube [14] in the context of elliptic eq
tions, called the explicit jump immersed interface method (EJIIM). Corrections are ad
to the chosen scheme at irregular points, so that the local truncation error is maintai
In the limit case of identical material properties, corrections are equal to zero, recove
the original scheme. However, it is again difficult to calculate corrections in the case ¢
complicated schem&. Moreover, corrections are deduced from one-sided interpolatio
of U. When coupling the EJIIM and the Lax—Wendroff scheme, we have observed insta
ities even for moderate contrasts. We suppose that they come from these nonsymme
interpolations.

3. THE EXPLICIT SIMPLIFIED INTERFACE METHOD (ESIM)

3.1. Introduction

In the previous section, we stressed some properties, constraints, and remarks i
interface methods, summed up as follows:

e The order of accuracy of the scherfemust be maintained at all irregular points,
whatever the position of the interface;

e We do notwant to write explicitly a new scheme (like the IIM) or corrections dependil
on S (like the EJIIM);

e The schem& must be recovered in the limit case of identical material properties
both sides ot (like the EJIIM);

e Interpolations used by the interface method must be two-sided and symmetrica
relation tow, in order to avoid instabilities.

Therefore, we propose a new method called the explicit simplified interface method (ESI
Its design wants to achieve the four previous remarks. For the rest of the section, we
mainly consider a two-stage scheifie

Modified solutions and modified valuesThe first part of the method consists in build-
ing, on each side af and attimd = t,, a smooth extensidd *(x, t,) of the exact solution
U (X, t,) on the other side. These extensions are catlledified solutionsThis is schema-
tized in Fig. 2 in the case of a scalar discontinuous fundtlgr, t,) (solid line): this is not
the acoustic casel@ndp are continuous), but it is more clear. Modified solutiahgx, t,)
are drawn in dotted lines and are defined so that functions

3

~ U(x,t if Xj_ < X
O1(x.t,) = i n) T Xo-2e1 = <a
U*(X, th) if @ <X < Xg4x
(15)
~ U*(x, t if Xj_ker <X <
Op(x. t) = (X, tn) TXgkr1 = <a
U, th)  ifa <X < Xgi

are smooth up to an arbitrary order. Recall thisthe width of the schems: s0,U1(X, ty)
andU ,(x, ty) are defined on the range of values used for time-marching respectively
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| | | |
1 1 1 1
X1 ™ x5 |00 Xy U X Jak

FIG. 2. Exact solutiorJ (x, t,) (-) and modified solutions *(x, t,) (- - -).

left-sided and at right-sided irregular points. Let us examine the first function, t,) and
the modified solutiotJ *(x, t,) on the right (15). We impose the conditions

am am B
m=0,...,2p—1, MU (a,tn)zax—mU(a ,tn), (16)
sothatd;isinC2P~1on [X;_a1, X34k]. The integempis discussed furthep(has obviously
nothing to do here with the acoustic pressure). The condition (16) is valid only fol
sufficiently smooth initial valublg(x) = U (X, 0): for Ug(x) in C3, the exact solutiob) (x, t)
is in C® on the left sideX < «) and on the right sidex(> «). Limit valuesaax—mmu (™, th)
can be defined up tm = s, and (16) is well-defined under the conditiop 2 1 < s. One

way to ensure (16) is to write the modified solution on the righ¢x, t,) as a polynomial,

E ) L LI
X
U*(X, tn) = mgo Y@ ), (17)

In fact, we can only obtain estimations of limit valuggqu (¢™, ty). Therefore, only es-
timations ofU*(x, t,) andl]l(x, t,), based on numerical values, can be found. Actually
these estimations will be avoidedndified value§.e., values at right-sided irregular points
of the estimation o) *(x, t,)) are determined directly and explicitly from numerical values
A similar discussion holds fdd *(x, t,) and modified values on the left, with limit values
XU (et t).

axm

Using modified values.The second part of the method consists of using the schel
S everywhere, but some modified values are used for time-marching at irregular poi
Suppose tha; is an irregular point. The key idea is to applyxathe schemd& on values
of the smooth functiotd 1(x, t,) if xi < & (resp.U2(x, t) if X > «). Thus the schemé&
uses aix; numerical valuesit points on the same side of the interfaceagas usually),
andmodified valuesit points on the other side of the interface. Remarks of the beginni
of the section have been taken into account in the following way:

e From a minimal number of numerical valug§’s used for the determination of mod-
ified valuesU|"'s, the order of the couplage “scheriet- ESIM” at irregular points is the
same as the order of the sche&at regular points. See Section 3.4 for the demonstratio

e Unlike the IIM or the EJIIM, the schemg is modified implicitly. All the difficulty of
the method is transferred on the determination of modified values (see Section 3.2), w
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is explicit and very easy (see (25) and (29)). Coupling WENO 5 with the ESIM is not harc
than coupling Lax—Wendroff with the ESIM. It justifies the name “simplified.”

e In the borderline case where material properties are the same on both sides ¢
U = U} at all irregular points (see Section 3.3). Then, the schénie homogeneous
medium is completely recovered.

e Determinations of modified values are symmetrical in relation.tdhe stability is
discussed gqualitatively in Section 3.6.

3.2. Construction of Modified Values

Construction of modified values on the right.imit valuesdme(a* t,) required for
U*(x, ty) (17) are now estimated. Taylor series expansiongettPorder are written around
o

2p— 1(
i=J—p+Ll....d+p Uk.th=_ 'm

m=0

a)™ 9m

e —U (™ th) + O(AX?P), (18)

wherea™® refers tow~ if X < o and toa™ otherwise. The notatio®(Ax*), generally used
for a scalar, refers here to a vector of an arbitrary size (depending on the context) wi
entries areéD(Ax*) scalars. From jump conditions (11), we get

m m

9 9
m=0...2p~1 — U@ t)=Dn U@ .t). (19)

According to the position of;, Eq. (18) are

2p-1

i=J—p+1,...,3 UX,t)= ZM o" U(a‘ tn)+O(Ax2p)
oy m! axm
21 (20)
i=J+1...,3+p, U(xi,tn)zzuD ﬂU(oﬁ tn)+O(Ax2p)
m! X

m=0
Equations (20) are written using a matrix formulation, as
U(XJ—p+1, tn) U(Ot_,tn)
: = Mopp : + O(AX?P), (21)
U (X34ps th) ﬁU(oF,tn)

ax2p-1

whereM 4 is defined as &p)-by-(2q) block matrix with 2-by-2 blockgn = 1, .. ., 2q):

(XJ—p+m—Of)n71

P if me[l, p]

—I)!

Mipglm.n] = § " _L)M _ (22)
%Dml ifme[p+1,2p].

Even ifq = pin(21), the general definition o¥1, 4 (22) is useful in Section 3.6. Limit val-
uesdx—m U (o™, ty) could be obtained by inverting (21), leadingld (x, t,) andU 1(x, t,).
However, exact values and truncation errors are unknown. Exact alxes,,) are then re-

placed in (21) by numerical valugg' and the vector of truncation errorsis eliminated. Limit
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vaIuesaf’Tmm U (o, ty) are replaced by numerical estimations: for the sake of simplicity, the

estimations are writte;ﬂ(m—m U, . The subscriptindicates that they are used for the constructi
of Uy, the operatongmm is only symbolic, and the superscript refersito. Then we write

Ul pi1 Ur

n aZp—l _
UJ+p 3ﬂm1U1

Estimations of the limit values are obtained by inverting (23). This leads to an estimat
of the modified solution (17) and to modified values,

2p-1
i=J+1L....3+k U=

m=0

(Xi——a)m om

o axm U;. (24)

Using (23), we obtain explicitlyJ;*’s on the right

n
Uj pi1

. _ y)2p-1
i=J+1...,J+k U{“:(l,...,w)/\/l‘l (25)

@p-nr )7Pe

n
Ujsp

Construction of modified values on the lefl’he same method is used to deﬂi]wg(x, th)
and to compute modified values on the left. The expres%"emg“ refers to a numerical
estimation of2- U (e, tn). We write

Ul pi Uy
: = Npp : : (26)
a2p—1
U9+p % Uy

whereN, q is a(2p)-by-(2q) block matrix with 2-by-2 blocksn =1, ..., 2q):

Kgprm=a)"t -1
=tpr— Dnoy ifmell, p]

Npglm, n] = oo a1 . (27)
=t 2 ifme[p+1,2p].
Modified values on the left are
2p-1
. " X —a)™ o™
|:\]—k+1,,\], UIZZTax—mUZ (28)
m=0
Using (26),U;*’s on the left are obtained explicitly
Ul s
R SIOETTTO CRNC Sl R DY I (29)
' @p-1t )PP

n
Uisp
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3.3. Using Modified Values: ESIM p-p

At an irregular poink;, time-marching of a two-stage scheieises modified values at
points on the other side of asx;. It is written abstractly (cf (13)) as

J—k+1=<j=<J UM=U"+H(U],.....U. Uy U
(30)
. 1 * *
J+1<j<d+k UMt =UP+H(UF ... U5 US U ).

This method is referred to as ESIpt p. The application of ESIM to multistage schemes
suchas WENO 5 is obvious. The construction of modified values at one stage uses nume
values at the previous stage. For the couplage “WENOESIM p-p,” the procedure is
repeated four times during a time step (i.e., at each Runge—Kutta integration).

MatricesM;}p and/\/'pjt (Egs. (25) and (29)) are computed explicitly only one time
during a preprocessing step. At each time step, only matrix—vector multiplications (Egs. (
and (29)) need to be done. The computational cost is very low. We can showthat
andNp , can be inverted—whatever the position of the interface and the values of phys
parameters—by calculating their determinant. For example, let us see the césg;of
Setting

o — JAX
€= TAx (31)
we get
p~(C) p* )
detMq 1 = (1_6)_+ — | +€||(1—€e)— +€|AX", (32)
pt\ct p-

which is always different from zero for positive valuesaf andc*, and for 0< € < 1. It
has been verified also fov1,, , and A p, up top = 3.

For identical properties on both sidesQDr, = 1, (10). For a right-sided irregular point
X, we deduce from (22), (23), and (24) that

i=J+1,...,34+k U=U" (33)

if k < p. A similar property holds for left-sided irregular points. Therefore, the sch&me
in homogeneous medium is completely recovered under the conkitop.

3.4. Local Truncation Error Analysis

Let x; be a left-sided irregular poinix; < «). For a given two-stage schensg we
seek the local truncation errd (x;, t,) of the couplage “schemg& + ESIM p-p” at x;.
First, £1(Xj, tn) is developed. Second, an auxiliary problem is defined, whose solution &
local truncation erro,(xj, th) are known. Comparing(X;, tn) and L1(xj, t,) leads to
an explicit value ofZ1(xj, tn).

Couplage “schemé& + ESIM p-p”.  Time-marching ak; is based on modified values
(30), leading to

AU -un -

AT J)—A—IH(UJ-“_,(,...,UB‘, Usig.--.Uf) =0. (34)
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To get the local truncation errdi,(X;, tn), we replace each numerical value that appeal
explicitly or implicitly in (34) by its exact value. The structure of (34) lead<C@X;, tn)

as the difference of two quantitied}(x;, th) and £3(xj, t,). The first partCi(x;, ty) is
obtained from Taylor series expansiondofx;, t,11) att,,

1
LI(Xj,th) = AU taen) = U (X, )]

2p 1 1 m
Atm 9
= Z —U(X), 1)) + O(AX*P™), (35)

Recall thatAt and Ax are linked by the CFL number (12D (At*) = O(Ax*) for all A
For the second paﬂ (Xj, ta) Of L1(Xj, ty), Taylor series are written at~ on the left S|de
i=j—-k+1,...,39),

2p-1 . ym
Ui.t)=>_ % S V@ )+ O(AX?P). (36)

m=0

On the right sidgi = J +1,..., J 4+ k), modified valued);*’s are replaced bg/*(xi, t,)
(25),

U(X3-p+1, tn)

% X — a)prl _1
Z/[ (Xi,tn): (1,,(2p_1)')./\/lp1p : (37)
U(XJ+pa th)
From (21), we get
U ,t
(Xi _ a)ZP*J- . (Oé. s n) ,
Z/[*(Xi,tn): <1,,(2p_1)|> Mg,p Mp,p . +O(AX p)
Pt U (e, to)
2p-1 . m am
= % aa—m U™, th) + O(AX?P). (38)

0

3
Il

The estimation of the error in (38) is based on two results. First, we can determine the c
of magnitude for the entries in the block vector,

T = M;LO(AXP) = {(O(AX?P), ..., O(AX)). (39)

A similar result is shown in [2]. Second, we have obviously

- \2p-1
(1, %) T = O(AX?P). (40)
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Transferring values (36) and (38) inf§(x;, t,) leads to

2p-1
1 (Xi_k — )™ 9™ ~
20y _ i 2
L1(Xj, th) = EH( mE_O Tax—mU(a th) + O(AXP), ...,
po1 B (41)
p_
Xj4k —a)™ 3™ _ 2
E Tmu(a ,tn)+O(AX p) .
m=0
The discrete operatdt is continuous [7]; hence
2p-1
1 Xj_xk —a)™ ™M _
20y, _ Z i
£1(Xj,tn) = AtH<m_0 mi 8Xmu(a ),
po1 B (42)
p—
z : (Xj+k _a)m om — 2p—1
m=0
We recall
L1(Xj, tn) = L1(X], tn) — L3, t). (43)
Auxiliary problem. Let us consider the function
2p-1 A A
(X—a)* 9 _
V(x,t) = — U™, 1), 44
(X, 1) A§:0j — 5o Y@ (44)

whereU (x, t) is the solution otJ; + A"Uy = 0. We can easily verify thaf (x, t) is smooth
acrossy and is the solution of the Cauchy problem

(X — a)?P1 2P

Vi 4+ A" Vy = “Ep_ D U ,t)
2o o (45)
_ _ X—a)* 0 B
Vo(x) = V(x,0) = ; T V@ 0.

A condition onUgy(x), slightly more strict than g — 1 > s, is then required: limit values
% U (a*, t) must be defined for atl. The schemé is used for the resolution of (45), so
that a local truncation errax(x;, tn) is defined. For the exact solution (44) of (45), we car

developLo(xj, tn)

V(X',t+1)—V(X',t) 1
il N I T = MV X t), - VX t) - (46)

L5(Xj,tn) L2(X),th)

[-"2(XJ ’ tﬂ) =

A Taylor expansion oV (xj, tn41) is written arounds:

2p-1 Atm_l am

=1 :
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Form=1,...,2p—1, (44) leads to

2p—1-m
™ o xj —a) o+
gtm ¥ 0 1) = I( 2 T pelenw
2=0
2p-1 ) A—(2p—m) A
C_y\2p-m xj —) K -
+ (X — a) kzzzp;m i S U@t

2p—1-m A A

am (Xj —a)* 9 B ~

— at_m< 2 : ’TWU(a ,t) + O(AX?P m)). (48)
r=0 '

Hence, we have

1 _
L30:t) = 3 ml atm A Xk

2p-1 ,.m-1 qm /2p—1-m YRS
At™1 P — 3
( § : & — )" U(a,tn)) + O(Ax?P™ Y. (49)

A=0

For eachm, Taylor series expansions 0f(xj, t,) are written around:~

2p—1-m PREPSY
Xj —a)* 0 _ _
S FE U ) = Ut + O(ax® ™, (50)
=0
hence, we have
2p-1 Atm_l am

LX) t) = >

3 U (X, ta) + O(AX?P™Y), (51)

For the computation oa‘:%(xj ,th), V(Xj, tn) is replaced by its exact value (44)

2p-1
1 Xj_k — o)™ M _
L2 it = — A T A U I 9
20X, tn) At H( r;) m! axm (@ t)
po 1 a (52)
p— m m
ik — d
Z Kj4k —a)™ 9T U(Oé,tn)>.
m! axm
m=0
We recall
L2(X), tn) = L3(X], tn) — L5(X;, o). (53)

Conclusion. From (35), (42), (51), and (5211 (X, j, tn) andLa(X, j, t,) are compared:
Li(Xj, th) = L3(X}, tn) + O(AX*P™H) o1
= L1(Xj, th) = La(Xj, tn) + O(AXP™).  (54)
L3(X), tn) = L5(X;, ta) + O(AX?P~1)

V(x,t) is smooth on Xj_k. Xj+«] at each timet. Moreover, we have supposed that the
schemesS isr-th order accurate. So, we gé$(x;. t,) = O(AX") [10]. Thus, the couplage
“schemeS + ESIM p-p”is r-th order accurate under the condition

2p—1=>r. (55)

A similar result can be obtained for multistage schemes such as WENO 5.
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3.5. Choice of p

We seek the smallest values pthat optimize the couplage “scher§et+ ESIM p-p.”
The main constraints and results previously found are summed up as follows:

e s> 2p — 1 (required for the definition df *(x, t,));
e 2p—1>r1 = L1 = 0(A2);
e p>k=U*=Uif p~ =ptandc” =c" .
Recall thatr andk are respectively the order and the width of the schefiads the local

truncation order of the couplage “schefie ESIM p-p” at irregular points, and is the
smoothness of the initial valugy(x) = U (x, 0). It leads to

1
p:max{k,r +1-— E(%)]

s=2p-1,

(56)

where E(X) is the greatest integer less than or equaktd-or greater values of, the
precision does not increase, whereas the computational cost grows. As a consequ
Lax—Wendroff and TVD schemes are associated with ESIM22, and WENO 5 is associ:
with ESIM 3-3. We recall that left values and right valuesgﬁg Uo(x) must be defined
everywhere.

3.6. Stability

Introduction. We do not propose a theory of stability for the couplage “schéme
ESIM p-p.” Nevertheless, we have considered this problem in detail through computatic
for various positions of the interface, physical parameters, and CFL numbers.

We have never observed instabilities in the case “WENPESIM 3-3” up to CFL= 1,
even for very high contrasts (such as water—air) and for an interface very close to a
point, or on a grid pointd = 0). In each case, measures of errors have shown a fifth-orc
convergence of the couplage (see Section 4).

The couplages “Lax—Wendroff ESIM 2-2” and “TVD + ESIM 2-2” are stable also,
except in the two limit cases

p~>pt,co>»ct and € » 1
(57)
p- < pt,cc«ct and € — 0.

We have not obtained theoretical limit valuespp®, andc*, and it remains an interesting
open question. However, we can express some remarks. First, this problem of stal
also exists in the case of the IIM, with the same limit values,0f*, andc*. Second,
the behavior of Lax—Wendroff and TVD schemes coupled with ESIM 2-2 are the sar
instabilities appear exactly from the same limit values,gf*, andc®. Thirdly, the value
of p has an influence on the stability. For example, coupling the Lax—Wendroff sche
with ESIM p-p (p = 1, 2, 3) in the case of water—air leads to instabilities for the following
limit values ofe:

p=1. €>0.99
p=2: e€>0.999 (58)
p=3: €>0.9999
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However, increasing is not a satisfactory solution: it is not well-matched to second-ord
schemes such as Lax—Wendroff and TVD.

Least-square resolution.To solve the previous problematic cases, we propose anott
determination of modified values that does not produce instabilities. The process of E.
2-2—described in Section 3.2—involves the use of four numerical values on both sides
and estimation of spatial derivativesldfup to third order. We propose now to estimate thos
four limit values withsix numerical values df) on both sides o&. So, for the construction
of modified values on the right, we write

Ui, Uy
Co [ =Masz : , (59)
3 _
Ujis 30 U1

where M3 ; is the rectangular matrix (22) with = 3 andq = 2. Equation (59) is solved
by least-square, so that modified values on the right are
Ui
. . i —a)®\ 4 —1t .
| = 1, 2, Ui = (1, ey T)( ./\/l3,2 Mg,g) ./\/13,2 . . (60)
Udts

The same procedure is applied for modified values on the left; this is logically cal
ESIM 3-2. We have never observed instabilities in doing this procedure, whatever
physical parameters and the position of the interface. A similar least-square procec
“Lax—Wendroff+ ESIM 2-1" has been used fer> 0.99 without producing instabilities
(cf (58)).

The analysis of truncation error exposed in Section 3.4 is always valid. Coupling “Le
Wendroff+ ESIM 3-2" and “TVD + ESIM 3-2" is second-order accurate as it is confirme:
by measures of errors. Explaining the stability of ESIM 3-2 remains another interest
guestion. Furthermore, this least-squares resolution will be systematically used in 2D
3D application of the ESIM, as will be presented in a future paper.

4. NUMERICAL RESULTS

Three numerical tests are proposed. The first one concerns the propagation of an ac
wave across a single interface with moderate contrasts. The analysis of Section 3
confirmed by measures of errors. The second test extends the previous study to very
contrasts. The last example introduces a future study of the ESIM in 2D and 3D. A st
of the computational cost is not provided here, because it is almost negligible in the
dimensional case.

4.1. A Single Interface

The simple acoustic problem of a single interfage<{ 96.3 m) is considered, with a
300 m long fluid medium and physical parameters of
po = 1000 kg/mi, co= 1500 m/s ifx <«

. (61)
p1 = 1200 kg/nt, c1 =2800 m/s ifx > a.

(p(X), c(X)) = {
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Numerical experiments are performed on 400 grid points, with €RL8 in medium 1.
They are initialized by a spatially bounded right-going wave,

1
Uo(X) = — fo(&) <°°) . (62)
Lo
The maximal smoothness is required for the couplage “WENCESIM 3-3”: in this case,
s = 5(56). So, we use & spatially bounded sinusoidal functidig(¢):

o) = SiN(wc ) — & siNwcE) + 23 sin(dwcE) — 55SiNBwc€) if0 <& < fic,
o= O else withé =to— 7.
(63)

Left and right values of sixth-order’'s derivatives d§(x) are defined everywhere (as
needed in Section 3.4). The central frequency.is= 50 Hz, andty = 51 ms. The initial
value of the acoustic pressure, called afterwardsstiiation is shown in Fig. 3a. After
reaching the interface, the acoustic wave is transmitted and reflected. Figures 3b, 3c
3d show numerical-( -) and exact values (solid line) of the solutiortat 90 ms.

Figure 3b shows the solution computed with the couplage “Lax—WendrdESIM
2-2." The dispersive behavior of the Lax—Wendroff scheme is clearly seen in spuri
oscillations. Figure 3c shows the solution “TV\P ESIM 2-2.” The use of a flux-limiter
reduces oscillations but flattens the crests of the wave. Figure 3d shows the solution “WE
5+ ESIM 3-3." The acoustic wave is very well resolved.

Table | shows the errors in both,, and L; norms obtained at = 90 ms with these
schemes, with and without the ESIM. Computations are performed in double precisior

6 6
4 4
(a) LAX
2 2l tesM2-2
0 0 —-\b‘f‘\.%—
-2 -2
t=51ms t=90 ms
-4 -4
-6 -6
20 40 60 80 100 60 80 100 120 140
6 6
4r TVD 4 WENOS5
© (d)
2} +ESIM2-2 2t +ESIM3-3
o o
-2 -2
4 t=90 ms _4} t=90ms
-6 -6
60 80 100 120 140 60 80 100 120 140

FIG. 3. The exact solution at = 51 ms (a); exact (solid line) and numerical solutien-Y att = 90 ms:
Lax—Wendroff+ ESIM 2-2 (b); TVD+ ESIM 2-2 (c); WENO 5+ ESIM 3-3 (d).
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TABLE |
Errors and Orders of Accuracy in Section 4.1

Method N L. error L. order L;error L;order
Lax—Wendroff 200 2.38e00 — 8.784 —
400 8.8le1l 1.43 2.71el 1.70
800 2.15e-1 2.03 7.22e00 1.90
1600 5.99e2 1.84 2.06e00 1.81
3200 3.13e2 0.93 9.90e-1 1.06
6400 1.77e2 0.82 5.73e1 0.79
Lax—Wendroff 200 2.82e00 — 9.804 —
+ ESIM 2-2 400 1.14e00 1.31 3.264 1.61
800 3.30e-1 1.78 8.49e00 1.91
1600 7.80e2 2.08 2.13e00 1.99
3200 1.93e2 2.01 5.33e-1 2.00
6400 4.82e-3 2.00 1.33e1 2.00
TVD 200 1.55e00 — 3.86el —
400 6.03e-1 1.36 141e1 1.45
800 2.9le1l 1.05 9.47e00 0.57
1600 1.14e1 1.34 3.28e00 1.53
3200 3.48e2 1.72 1.26e00 1.37
6400 2.10e-2 0.72 6.94e-1 0.86
TVD 200 1.61e00 — 3.42e1 —
+ ESIM 2-2 400 6.32e1l 1.35 9.94e00 1.78
800 2.18e1 1.53 2.47e00 2.01
1600 7.35e2 1.57 6.38e-1 1.95
3200 2.44e2 1.59 1.59%e1 2.00
6400 8.19e3 1.57 4.05e-2 1.97
WENO 5 200 1.15e00 — 3.29d —
400 2.20e-1 2.39 6.12e00 2.42
800 1.30e1 0.76 4.35e00 0.49
1600 3.36e-2 1.95 1.05e00 2.04
3200 4.10e2 —0.28 9.59e-1 0.14
6400 1.15e -2 1.83 1.8%e1 2.34
WENO 5 200 7.74el — 2.02er1 —
+ ESIM 3-3 400 6.13e2 3.65 1.44e00 3.80
800 2.96e-3 4.37 8.12e-2 4.15
1600 1.23e4 4.58 2.99e 3 4.76
3200 4.50e-6 4.77 1.03e4 4.85
6400 1.55e7 4.86 3.43e-6 4.90

the case of WENO 5 scheme, the time-step has been adjusted+o(Ax)** so that the
fourth-order Runge—Kutta in time is effectively fifth-order. When no interface method
used, homogeneized valygsandc; of p andc are used at grid points: p; is the arithmetic
average ofp (x) overC; = [xi_%, xi+%], and the bulk modulu&; is the harmonic average
of K(x) overC;; ¢ is deduced by, = /K;/pi [6].

When the ESIM is not used, the order of accuracy is smaller than the theoretical orde
homogeneous medium, and it changes a lot with the number of grid points. Using the E:
(56) and starting at about 400 grid points gives the order of accuracy in a homogen
medium:
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e for Lax—Wendroff, 2 (in both norms),
e for TVD, 1.6 inL, norm and 2 inL; norm,
e for WENO 5, tending to 5 (in both norms).

Let us notice that the smoothnessf(x) is fundamental to obtain the fifth-order accuracy
of the couplage “WENO 5 ESIM 3-3": only a 3.4 (inLs norm) and 2.4 (irL; norm)
order is measured for@ function fo(¥).

4.2. Large Contrast Problem: Water—Air Interface

The previous study is extended to large contrast media. Material properties are

po = 1000 kg/n?, ¢y = 1450 m/s (water)

64
p1 =13 kg/n?, ¢, =340 m/s (air) (64)

Differences between exact and numerical values of the solution computed by TVD
WENO 5 schemes with and without interface methods are plotted on Fig. 4. Results
displayed from 20 up to 120 m, &t= 90 ms. The scale of the y-axis has been almo:s
amplified by a factor 3 (see y-axis of Fig. 3). Because of the impedance contrast, the v
is almost completely reflected: at this scale, the transmitted wave is not visible. Th
subfigures show errors computed with a TVD scheme: without an interface method
with the IIM (b), with the ESIM 2-2 (c). Decreasing errors are observed and “WENO 5
ESIM 3-3” is very accurate (Fig. 4d).

Figure 5 shows errors computed with TVD and WENO 5 schemes in homogeneous w
(0o, Co) att = 90 ms (obviously, no interface method is used). At this time, acoustic wav

[ @ 2

] ; (b)

0 0 A\
-1t [TvD] -1} [TVD +1IM]
_o| —lexact solution} 2 —[exact solution]

20 40 60 80 100 120 20 40 60 80 100 120

©
()]

] e VAN AV 0

_4| VD +ESIM2-2] _1| [WENOS5 +ESIM3-3]

> —{exact solution) > —[exact solution]

20 40 60 80 100 120 20 40 60 80 100 120

FIG. 4. Differences between numerical and exact values of the solutioa &0 ms (water-air): TVD scheme
without an interface method (a)1IM (b); +ESIM 2-2 (c); WENO 5+ ESIM 3-3, from 20 up to 120 m (d). The
vertical line represents the position of the interface.
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[ [
2 ! 2 [
(a) ! (b} I
1l I 1 |
| l
] A~ |
0 D | 0 1
[TvD] | [WENOS] |
-1 . -1
—[exact solution) : —{exact solution] :
-2 | =2 |
. R 1, . i
40 60 80 100 120 40 60 80 100 120

FIG. 5. Differences between numerical and exact values of the solutipe=880 ms (homogeneous water):
TVD (a), WENO 5 (b), from 40 up to 140 m. The dotted line recalls the position of the interface water-air in 1
example of Fig. 4.

have traveled in water the same distance as reflected acoustic waves of Fig. 4. Dotted
in Fig. 5 recall the position of the interface in Fig. 4.

It is instructive to compare Figs. 4c and 4d, respectively, with Figs. 5a and 5b, a
performing symmetries of these last ones in relation to the x-axis and to the dotted ver
line (these symmetries are due to the impedance congrgst> poCo and to the change
in direction). Shapes and levels of errors are then very close. The presence of the inte
does not introduce noticeable artefacts when the ESIM is used.

Measures of errors and orders of accuracy have been performed also for various pos
of @ and values ot (31), confirming the analysis of Section 3.4. If the Lax—Wendroff o
TVD scheme is used, and for an interface very close to a grid point@.999), ESIM 3-2
is used to avoid instabilities (see Section 3.6).

4.3. 2D Plane Wave

As a last example, we provide a two-dimensional result. The key idea of the ESIM
determination and use of modified values at irregular points—obviously remains the s
as in the one-dimensional case. The derivation of jump conditions, the constructiot
modified values by a least-square resolution, and the analysis of the resulting scheme
be omitted here; the comparaison with other interface methods and the investigatio
various cases (interface waves, elastic waves) will also be developed in a future publica
Our goal here is to show only the improvement of the computation when the ESIM is us

We use an unsplit high-resolution scheme with flux-limiters, called wave-propagat
algorithm, developed by Langseth and LeVeque [9, 11]. The acoustic case in a 2D he
geneous fluid medium is studied in [9].

We consider the case of a plane wave stricking a plane interface that is not aligned
the grid. Exact values of the acoustic pressure (called agaisallaéon of reflected and
transmitted waves are easy to determine [1]. The interface is described by

I'={M(X,y)/y = f(X) = (X — Xo) tanbp}, (65)

with 85 = 68 andxg = 60.4 m. Physical parameters are:

po = 1000 kg/mf, co=1500 m/s ify > f(x)

) ey 66
(p(X, ), C(X, ¥)) {pl = 800 kg/m?, c1=1000 m/s ify < f(x). (©0
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Exact pressure at time t = 60 ms Computed pressure at time t = 90 ms

20

40

60
] 80
-20 100
-40 420
-60

20 40 60 80 100 120 20 40 60 80 100 120

FIG. 6. Plane wave hitting a plane interface that is not aligned with the grid. Exact values of the acou
pressure at = 60 ms (a) and computed values of the acoustic presstire &0 ms (b).

The incident wave is based again &1¢), with
1 .
E=1ty— g(x COsB; + Y siné;) (67)

wheretg = 60 ms, 6, = 30° and f, =50 Hz. Computations are performed on %36
136 grid points for a 135 nx 135 m domain, with CFL= 0.8 in medium 0 (the wave-
propagation algorithm is stable up to CEL1 in 2D). Because of the stencil, two “ghost
cell’lines are defined on each boundary of the domain. Exact values of the acoustic pres
and of acoustic velocities are assigned at ghost cells at each time-step. See [9] for addit
remarks.

Figure 6 shows initial values of the solutiontat 60 ms, and the computed solution at
t = 90 ms. Figure 7 shows slices of the exact (solid line) and computed-éflected and

Slice alongy = 60 m Slice along y =60 m

8
8

3
8

-
o
-
(=

Acoustic pressure (N/m2)
=)

Acoustic pressure (N/m2)
<

-10} -10}
=20} (a) =20t (b)
-30 -30
-40 . —40
0 50 100 0 50 100
x (m) x (m)

FIG. 7. Plane wave hitting a plane interface that is not aligned with the grid. Values of the acoustic pres:
computed by a wave propagation algorithm without an interface method (a) and with the ESIM £bpétms,
alongy = 60 m. Exact (solid line) and numerical solution .
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transmitted waves along= 60 m att = 90 ms, without the ESIM (a) and using the ESIM
(b). In the first case, we take into account the interface by averaging the physical param
to obtain values in each grid cell. Then the solution is smeared across the interface.
can find a discussion about this problem in the case of Maxwell equations in [3]. Using
interface method such as the ESIM avoids these numerical artefacts (Fig. 7b).

5. CONCLUSION

A new interface method has been developed and presented in the 1D case, the ex
simplified interface method (ESIM). Modifyingxplicitly numerical values used by a nu-
merical scheme at irregular points amounts to modifying the scliapiéitly, so that its
order is maintained at irregular points. The implementation of the ESIM can be divided i
three independant parts:

e Writing of jJump conditions. These conclusions only depend on the physical probl
under study and on geometrical features of the interface.

e Construction of modified values during a preprocessing step. This algorithm depe
on the scheme’s width and order but not on its expression.

e Computation and use of modified values at each time-step.

Qualities of the method have been verified through various numerical examples. The
example (Section 4.4) introduces a future discussion about 2D and 3D applications the
have developed. Interface methods on uniform cartesian grids, such as the ESIM, a
general interest not only for computational acoustics, but also for a wide class of probl
such as computational electromagnetics and fluid mechanics.
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